
Chapter 7:Dictionaries

Prepared by: Hanan Hardan

3/14/2022 1



Python Dictionaries

• Dictionaries are used to store data values in key: value pairs.

• A dictionary is a collection which is ordered, changeable and does not 

allow duplicates.

• Dictionaries are written with curly brackets, and have keys and values

• Index values are called keys

• Keys are unique within a dictionary while values may not be. 

• It is generally used when we have a huge amount of data. Dictionaries 

are optimized for retrieving data. We must know the key to retrieve the 

value.

3/14/2022 2



Python Dictionaries

• Create and print a dictionary:

dict = {'Name': 'Zara',

'Age': 7,

'Class': 'First'

}

print(dict)

3/14/2022 3



Python Dictionaries

• Create and print a dictionary:

dict = { } 

dict[‘Name'] = ‘Zara' 

dict[‘Age']=7

dict[‘Class'] = ‘First'

3/14/2022 4



Dictionary Items

• Dictionary items are presented in key : value pairs, and can be referred 

to by using the key name.

dict = {'Name': 'Zara',

'Age': 7,

'Class': 'First'

}

print(dict['Age'])

3/14/2022 5



Dictionary Items

• Dictionary items are ordered

– When we say that dictionaries are ordered, it means that the items 

have a defined order, and that order will not change.

• Dictionary items are changeable

– Dictionaries are changeable, meaning that we can change, add or 

remove items after the dictionary has been created.

3/14/2022 6



Dictionary Items

• Dictionary items are does not allow duplicates.

– Dictionaries cannot have two items with the same key:

– Duplicate values will overwrite existing values:

dict = {'Name': 'Zara',

'Age': 7,

'Class': 'First‘

'Class': ‘Last‘

}

print(dict)

3/14/2022 7



Dictionary Length

• To determine how many items a dictionary has, use the len() function:

Example: Print the number of items in the dictionary:

dict = {'Name': 'Zara',

'Age': 7,

'Class': 'First‘

}

print(len(dict))

3/14/2022 8



Dictionary Items - Data Types

• The values in dictionary items can be of any data type:

Example: String, int, boolean, and list data types:

• thisdict = {

"brand": "Ford",

"electric": False,

"year": 1964,

"colors": ["red", "white", "blue"]

}

3/14/2022 9



Access Dictionary Items

• You can access the items of a dictionary by referring to its key name, 

inside square brackets:

dict = {'Name': 'Zara',

'Age': 7,

'Class': 'First‘

}

print(dict[‘Name’])

• There is also a method called get() that will give you the same result:

Example: Get the value of the “Class" key:

x = dict.get(“Class")

3/14/2022 10



Access Dictionary Items

• The keys() method will return a list of all the keys in the dictionary.

Example: Get a list of the keys:

x = dict.keys()

3/14/2022 11



Access Dictionary Items

• The list of the keys is a view of the dictionary, meaning that any 

changes done to the dictionary will be reflected in the keys list.

Example: Add a new item to the original dictionary, and see that the keys 

list gets updated as well:

car = {

"brand": "Ford",

"model": "Mustang",

"year": 1964

}

x = car.keys()

print(x) #before the change

car["color"] = "white"

print(x) #after the change
3/14/2022 12



Access Dictionary Items

Get Items

• The items() method will return each item in a dictionary, as tuples in a 

list.

Example

car = {

"brand": "Ford",

"model": "Mustang",

"year": 1964

}

x = car.items()

print(x)
13



Access Dictionary Items

Check if Key Exists

• To determine if a specified key is present in a dictionary use the in 

keyword:

Example

Check if "model" is present in the dictionary:

car = {

"brand": "Ford",

"model": "Mustang",

"year": 1964

}

if "model" in car:

print("Yes, 'model' is one of the keys in the car dictionary")
3/14/2022 14



Change Dictionary Items

Change Values

• You can change the value of a specific item by referring to its key 

name:

Example: Change the "year" to 2018:

car= {

"brand": "Ford",

"model": "Mustang",

"year": 1964

}

car["year"] = 2018

3/14/2022 15



Change Dictionary Items

Update Dictionary

• The update() method will update the dictionary with the items from the 

given argument.

• The argument must be a dictionary, or an iterable object with key : 

value pairs.

Example: Update the "year" of the car by using the update() method:

car = {

"brand": "Ford",

"model": "Mustang",

"year": 1964

}

car.update({"year": 2020})

3/14/2022 16



Add Dictionary Items

Adding Items

• Adding an item to the dictionary is done by using a new index key and 

assigning a value to it:

Example

car = {

"brand": "Ford",

"model": "Mustang",

"year": 1964

}

car["color"] = "red"

print(car)

3/14/2022 17



Add Dictionary Items

Update Dictionary

• The update() method will update the dictionary with the items from a 

given argument. If the item does not exist, the item will be added.

• The argument must be a dictionary, or an iterable object with 

key:value pairs.

Example: Add a color item to the dictionary by using the update() method:

car= {

"brand": "Ford",

"model": "Mustang",

"year": 1964

}

car.update({"color": "red"})
3/14/2022 18



Remove Dictionary Items

• There are several methods to remove items from a dictionary:

• The pop() method removes the item with the specified key name:

Example:

car = {

"brand": "Ford",

"model": "Mustang",

"year": 1964

}

car.pop("model")

print(car)

3/14/2022 19



Remove Dictionary Items

• The popitem() method removes the last inserted item (in versions 

before 3.7, a random item is removed instead):

car = {

"brand": "Ford",

"model": "Mustang",

"year": 1964

}

car.popitem()

print(car)

3/14/2022 20



Remove Dictionary Items

• The del keyword removes the item with the specified key name:

car= {

"brand": "Ford",

"model": "Mustang",

"year": 1964

}

del car["model"]

print(car)

3/14/2022 21



Remove Dictionary Items

• The del keyword can also delete the dictionary completely:

car = {

"brand": "Ford",

"model": "Mustang",

"year": 1964

}

del car

print(car) #this will cause an error because “car" no longer exists.

3/14/2022 22



Remove Dictionary Items

• The clear() method empties the dictionary:

car = {

"brand": "Ford",

"model": "Mustang",

"year": 1964

}

car.clear()

print(car)

3/14/2022 23



Loop Through a Dictionary

• You can loop through a dictionary by using a for loop.

• When looping through a dictionary, the return value are the keys of the 

dictionary, but there are methods to return the values as well.

Example: Print all key names in the dictionary, one by one:

car = {

"brand": "Ford",

"model": "Mustang",

"year": 1964

}

for x in car:

print(x)

#Print all values in the dictionary, one by one:

for x in car:

print(car[x])3/14/2022 24



Loop Through a Dictionary

• You can also use the values() method to return values of a dictionary:

for x in car.values():

print(x)

• You can use the keys() method to return the keys of a dictionary:

for x in car.keys():

print(x)

• Loop through both keys and values, by using the items() method:

for x, y in car.items():

print(x, y)

3/14/2022 25



Sort A dictionary

• display a dictionary in sorted order on keys

dict = {

'Name': 'Zara',

'Age': 7,

'Class': 'First',

'Grade':70

}

for x in sorted(dict):

print (x, dict[x])

3/14/2022 26



Example 1

Write a Python script to generate and print a dictionary that contains a 

number (between 1 and n) in the form (x, x*x).

n=int(input("Input a number "))

d = dict()

for x in range(1,n+1):

d[x]=x*x

print(d) 

3/14/2022 27



Example 2

Write a Python program to sum all the items in a dictionary.

my_dict = {'data1':100,'data2':-54,'data3':247}

sum=0

for i in my_dict:

sum+=my_dict[i]

print(sum)

3/14/2022 28



Example 3

• What if we want to know the keys that are associated with an item?

• Can do this one at a time or build a complete reverse dictionary.

original = {'A':1, 'B':3, 'C':3, 'D':4, 'E': 1, 'F': 3}

reverse = {1: ['A', 'E'], 3: ['C', 'B', 'F'], 4: ['D'] }

Solution:

def buildReverse(dictionary):

reverse = { }

for key,value in dictionary.items():

if value in reverse:

reverse[value].append(key)

else:

reverse[value] = [key]

return reverse

3/14/2022 29



Filter a dictionary by conditions on keys or 

values

dictOfNames = {7 : 'sami',8: 'jana',9: 'rami',10: 'rana',11 : 'reem',

12 : 'salma'

}

Suppose we want to filter above dictionary by keeping only elements 

whose keys are even. For that we can just iterate over all the items of

dictionary and add elements with even key to an another dictionary

newDict = dict()

for (key, value) in dictOfNames.items():

if key % 2 == 0:

newDict[key] = value

print(newDict)
3/14/2022 30



Filter a Dictionary by keys in Python using 

dict comprehension

Let’s filter items in dictionary whose keys are even i.e. divisible by 2 using 

dict comprehension ,

dictOfNames = {7 : 'sami',8: 'jana',9: 'rami',10: 'rana',11 : 'reem',

12 : 'salma'

}

ND ={ key:value for (key,value) in dictOfNames.items() if key % 2 == 0}

print(newDict)

3/14/2022 31



Example 4

Write a Python program to drop empty Items from a given Dictionary.

Sample Solution:

Python Code:

dict1 = {'c1': 'Red', 'c2': 'Green', 'c3':None}

print("Original Dictionary:")

print(dict1)

print("New Dictionary after dropping empty items:")

dict1 = {key:value for (key, value) in dict1.items() if value is not None}

print(dict1)

3/14/2022 32



Example 5

3/14/2022 33

Write a Python program to filter a dictionary based on marks greater 

than 70.

marks = {‘1': 75,

‘2': 80, 

‘3': 65, 

‘4': 90}

print("Original Dictionary:")

print(marks)

print("Marks greater than 70:")

result = {key:value for (key, value) in marks.items() if value > 70}

print(result)


